.
O Universo,
do Big-Bang
aos Buracos Negros
O que é espantoso é que as ideias de
Einstein ofereceram o enquadramento teórico às descobertas que
astrónomos e astrofísicos fizeram sobre a estrutura e constituição do
universo ao longo do século XX, ilustrando os caminhos complexos da
ciência e as suas incríveis revelações.
𝘌𝘴𝘵𝘦 𝘭𝘪𝘷𝘳𝘰 𝘵𝘳𝘢𝘵𝘢 𝘥𝘰 𝘪𝘯𝘪́𝘤𝘪𝘰 𝘦 𝘥𝘢 𝘦𝘷𝘰𝘭𝘶𝘤̧𝘢̃𝘰 𝘥𝘰 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘰, 𝘥𝘦𝘴𝘥𝘦 𝘰 𝘳𝘦𝘤𝘰𝘯𝘩𝘦𝘤𝘪𝘮𝘦𝘯𝘵𝘰 𝘥𝘢 𝘦𝘹𝘪𝘴𝘵𝘦̂𝘯𝘤𝘪𝘢 𝘥𝘦 𝘮𝘶𝘪𝘵𝘢𝘴 𝘨𝘢𝘭𝘢́𝘹𝘪𝘢𝘴 𝘢̀𝘴 𝘯𝘰𝘤̧𝘰̃𝘦𝘴 𝘥𝘦 𝘦𝘹𝘱𝘢𝘯𝘴𝘢̃𝘰 𝘥𝘰 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘰 𝘦 𝘥𝘰𝘴 𝘴𝘦𝘶𝘴 𝘤𝘰𝘯𝘴𝘵𝘪𝘵𝘶𝘪𝘯𝘵𝘦𝘴 𝘦𝘹𝘰́𝘵𝘪𝘤𝘰𝘴, 𝘦𝘯𝘵𝘳𝘦 𝘰𝘴 𝘲𝘶𝘢𝘪𝘴 𝘴𝘦 𝘦𝘯𝘤𝘰𝘯𝘵𝘳𝘢𝘮 𝘰𝘴 𝘣𝘶𝘳𝘢𝘤𝘰𝘴 𝘯𝘦𝘨𝘳𝘰𝘴, 𝘢 𝘮𝘢𝘵𝘦́𝘳𝘪𝘢 𝘦𝘴𝘤𝘶𝘳𝘢 𝘦 𝘢 𝘦𝘯𝘦𝘳𝘨𝘪𝘢 𝘦𝘴𝘤𝘶𝘳𝘢. 𝘊𝘰𝘮𝘦𝘤𝘦𝘮𝘰𝘴 𝘱𝘰𝘳 𝘢𝘤𝘦𝘯𝘵𝘶𝘢𝘳 𝘲𝘶𝘦 𝘰 𝘧𝘢𝘤𝘵𝘰 𝘮𝘢𝘪𝘴 𝘪𝘮𝘱𝘳𝘦𝘷𝘪𝘴𝘪́𝘷𝘦𝘭, 𝘦 𝘢̀ 𝘱𝘰𝘴𝘵𝘦𝘳𝘪𝘰𝘳𝘪 𝘰 𝘮𝘢𝘪𝘴 𝘧𝘢𝘴𝘤𝘪𝘯𝘢𝘯𝘵𝘦, 𝘧𝘰𝘪 𝘢 𝘷𝘦𝘳𝘪𝘧𝘪𝘤𝘢𝘤̧𝘢̃𝘰 𝘥𝘢 𝘦𝘹𝘱𝘢𝘯𝘴𝘢̃𝘰 𝘥𝘰 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘰 𝘢 𝘱𝘢𝘳𝘵𝘪𝘳 𝘥𝘰 𝘉𝘪𝘨 𝘉𝘢𝘯𝘨, 𝘲𝘶𝘦 𝘴𝘦 𝘪𝘯𝘪𝘤𝘪𝘰𝘶 𝘩𝘢́ 𝘤𝘦𝘳𝘤𝘢 𝘥𝘦 𝟣𝟥,𝟩𝟩 𝘮𝘪𝘭 𝘮𝘪𝘭𝘩𝘰̃𝘦𝘴 𝘥𝘦 𝘢𝘯𝘰𝘴. 𝘗𝘰𝘳𝘦́𝘮, 𝘢𝘵𝘦́ 𝘤𝘦𝘳𝘵𝘰 𝘱𝘰𝘯𝘵𝘰, 𝘵𝘳𝘢𝘵𝘢-𝘴𝘦 𝘥𝘦 𝘶𝘮 𝘧𝘢𝘤𝘵𝘰 𝘢𝘭𝘨𝘰 𝘪𝘯𝘦𝘴𝘱𝘦𝘳𝘢𝘥𝘰, 𝘱𝘰𝘪𝘴 𝘱𝘰𝘴𝘵𝘦𝘳𝘪𝘰𝘳𝘮𝘦𝘯𝘵𝘦, 𝘢𝘱𝘰́𝘴 𝘶𝘮 𝘱𝘦𝘳𝘪́𝘰𝘥𝘰 𝘪𝘯𝘪𝘤𝘪𝘢𝘭 𝘥𝘦 𝘥𝘦𝘴𝘢𝘤𝘦𝘭𝘦𝘳𝘢𝘤̧𝘢̃𝘰, 𝘰 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘰 𝘵𝘦𝘮 𝘷𝘪𝘯𝘥𝘰 𝘢 𝘢𝘤𝘦𝘭𝘦𝘳𝘢𝘳 𝘢 𝘴𝘶𝘢 𝘦𝘹𝘱𝘢𝘯𝘴𝘢̃𝘰 𝘢 𝘱𝘢𝘳𝘵𝘪𝘳 𝘥𝘰𝘴 𝘶́𝘭𝘵𝘪𝘮𝘰𝘴 𝘤𝘪𝘯𝘤𝘰 𝘮𝘪𝘭𝘩𝘢𝘳𝘦𝘴 𝘥𝘦 𝘮𝘪𝘭𝘩𝘰̃𝘦𝘴 𝘥𝘦 𝘢𝘯𝘰𝘴.
𝘗𝘢𝘳𝘢 𝘵𝘦𝘳 𝘶𝘮𝘢 𝘪𝘥𝘦𝘪𝘢 𝘥𝘰𝘴 𝘵𝘦𝘮𝘢𝘴 𝘲𝘶𝘦 𝘴𝘢̃𝘰 𝘵𝘳𝘢𝘵𝘢𝘥𝘰𝘴 𝘯𝘰 𝘭𝘪𝘷𝘳𝘰, 𝘦́ 𝘯𝘦𝘤𝘦𝘴𝘴𝘢́𝘳𝘪𝘰 𝘳𝘦𝘤𝘰𝘳𝘳𝘦𝘳 𝘢 𝘢𝘭𝘨𝘶𝘮𝘢𝘴 𝘪𝘥𝘦𝘪𝘢𝘴 𝘣𝘢́𝘴𝘪𝘤𝘢𝘴 𝘲𝘶𝘦 𝘱𝘰𝘥𝘦𝘮𝘰𝘴 𝘢𝘱𝘳𝘦𝘴𝘦𝘯𝘵𝘢𝘳 𝘤𝘰𝘮 𝘮𝘢𝘪𝘰𝘳 𝘤𝘭𝘢𝘳𝘦𝘻𝘢 𝘴𝘰𝘤𝘰𝘳𝘳𝘦𝘯𝘥𝘰-𝘯𝘰𝘴 𝘥𝘦 𝘢𝘭𝘨𝘶𝘯𝘴 𝘵𝘦𝘹𝘵𝘰𝘴 𝘲𝘶𝘦 𝘵𝘪𝘷𝘦𝘳𝘢𝘮 𝘰𝘳𝘪𝘨𝘦𝘮 𝘯𝘢 𝘪𝘯𝘷𝘦𝘴𝘵𝘪𝘨𝘢𝘤̧𝘢̃𝘰 𝘥𝘦 𝘈𝘭𝘣𝘦𝘳𝘵 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘯𝘰𝘴 𝘢𝘯𝘰𝘴 𝟤𝟢 𝘥𝘰 𝘴𝘦́𝘤𝘶𝘭𝘰 𝘱𝘢𝘴𝘴𝘢𝘥𝘰, 𝘱𝘰𝘴𝘵𝘦𝘳𝘪𝘰𝘳𝘮𝘦𝘯𝘵𝘦 𝘢𝘱𝘳𝘰𝘧𝘶𝘯𝘥𝘢𝘥𝘢𝘴 𝘥𝘶𝘳𝘢𝘯𝘵𝘦 𝘰𝘴 𝘢𝘯𝘰𝘴 𝟨𝟢, 𝘱𝘰𝘳 𝘤𝘰𝘴𝘮𝘰́𝘭𝘰𝘨𝘰𝘴 𝘦 𝘢𝘴𝘵𝘳𝘰𝘧𝘪́𝘴𝘪𝘤𝘰𝘴 𝘦 𝘱𝘳𝘰𝘴𝘴𝘦𝘨𝘶𝘪𝘥𝘢 𝘢𝘵𝘦́ 𝘢𝘰𝘴 𝘯𝘰𝘴𝘴𝘰𝘴 𝘥𝘪𝘢𝘴.
.
𝘙𝘦𝘤𝘰𝘳𝘥𝘦𝘮𝘰𝘴 𝘲𝘶𝘦 𝘦𝘮𝘣𝘰𝘳𝘢 𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘳𝘦𝘴𝘵𝘳𝘪𝘵𝘢 (𝘛𝘙𝘙) 𝘵𝘦𝘯𝘩𝘢 𝘦𝘴𝘵𝘦𝘯𝘥𝘪𝘥𝘰 𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘥𝘰 𝘮𝘰𝘷𝘪𝘮𝘦𝘯𝘵𝘰 𝘢̀𝘴 𝘭𝘦𝘪𝘴 𝘥𝘰 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘴𝘮𝘰, 𝘵𝘦𝘯𝘥𝘰 𝘭𝘦𝘷𝘢𝘥𝘰 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘢 𝘧𝘰𝘳𝘮𝘶𝘭𝘢𝘳 𝘶𝘮 𝘗𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘥𝘢 𝘙𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘲𝘶𝘦 𝘦𝘴𝘵𝘢𝘣𝘦𝘭𝘦𝘤𝘦 𝘶𝘮𝘢 𝘦𝘲𝘶𝘪𝘷𝘢𝘭𝘦̂𝘯𝘤𝘪𝘢 𝘦𝘯𝘵𝘳𝘦 𝘰𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴 𝘪𝘯𝘦𝘳𝘤𝘪𝘢𝘪𝘴 (𝘤𝘰𝘮 𝘷𝘦𝘭𝘰𝘤𝘪𝘥𝘢𝘥𝘦 𝘤𝘰𝘯𝘴𝘵𝘢𝘯𝘵𝘦) 𝘱𝘢𝘳𝘢 𝘵𝘰𝘥𝘢𝘴 𝘢𝘴 𝘭𝘦𝘪𝘴 𝘧𝘪́𝘴𝘪𝘤𝘢𝘴, 𝘢 𝘯𝘰𝘷𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘯𝘢̃𝘰 𝘦́ 𝘤𝘰𝘮𝘱𝘢𝘵𝘪́𝘷𝘦𝘭 𝘤𝘰𝘮 𝘢 𝘭𝘦𝘪 𝘥𝘦 𝘕𝘦𝘸𝘵𝘰𝘯 𝘥𝘢 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘤̧𝘢̃𝘰. 𝘚𝘦𝘨𝘶𝘯𝘥𝘰 𝘦𝘴𝘵𝘢 𝘭𝘦𝘪, 𝘴𝘦 𝘢 𝘥𝘪𝘴𝘵𝘳𝘪𝘣𝘶𝘪𝘤̧𝘢̃𝘰 𝘥𝘦 𝘮𝘢𝘵𝘦́𝘳𝘪𝘢 𝘮𝘶𝘥𝘢𝘴𝘴𝘦 𝘯𝘶𝘮𝘢 𝘤𝘦𝘳𝘵𝘢 𝘳𝘦𝘨𝘪𝘢̃𝘰 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰, 𝘰 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰 𝘮𝘶𝘥𝘢𝘳𝘪𝘢 𝘪𝘯𝘴𝘵𝘢𝘯𝘵𝘢𝘯𝘦𝘢𝘮𝘦𝘯𝘵𝘦 𝘦𝘮 𝘲𝘶𝘢𝘭𝘲𝘶𝘦𝘳 𝘰𝘶𝘵𝘳𝘢 𝘱𝘢𝘳𝘵𝘦 𝘥𝘰 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘰.
𝘈 𝘴𝘦𝘳 𝘷𝘦𝘳𝘥𝘢𝘥𝘦, 𝘪𝘴𝘴𝘰 𝘪𝘮𝘱𝘭𝘪𝘤𝘢𝘳𝘪𝘢 𝘢 𝘱𝘰𝘴𝘴𝘪𝘣𝘪𝘭𝘪𝘥𝘢𝘥𝘦 𝘥𝘦 𝘦𝘯𝘷𝘪𝘢𝘳 𝘴𝘪𝘯𝘢𝘪𝘴 𝘪𝘯𝘴𝘵𝘢𝘯𝘵𝘢̂𝘯𝘦𝘰𝘴 𝘦 𝘦𝘹𝘪𝘨𝘪𝘳𝘪𝘢 𝘶𝘮 𝘵𝘦𝘮𝘱𝘰 𝘢𝘣𝘴𝘰𝘭𝘶𝘵𝘰, 𝘦𝘮 𝘤𝘰𝘯𝘵𝘳𝘢𝘥𝘪𝘤̧𝘢̃𝘰 𝘤𝘰𝘮 𝘢 𝘛𝘙𝘙. 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘦𝘴𝘵𝘢𝘷𝘢 𝘤𝘪𝘦𝘯𝘵𝘦 𝘥𝘦𝘴𝘵𝘦 𝘱𝘳𝘰𝘣𝘭𝘦𝘮𝘢 𝘲𝘶𝘢𝘯𝘥𝘰, 𝘯𝘰 𝘖𝘶𝘵𝘰𝘯𝘰 𝘥𝘦 𝟣𝟫𝟢𝟩, 𝘑𝘰𝘩𝘢𝘯𝘯𝘦𝘴 𝘚𝘵𝘢𝘳𝘬 𝘭𝘩𝘦 𝘱𝘦𝘥𝘪𝘶 𝘱𝘢𝘳𝘢 𝘤𝘰𝘯𝘵𝘳𝘪𝘣𝘶𝘪𝘳 𝘤𝘰𝘮 𝘶𝘮 𝘢𝘳𝘵𝘪𝘨𝘰 𝘥𝘦 𝘳𝘦𝘷𝘪𝘴𝘢̃𝘰 𝘴𝘰𝘣𝘳𝘦 𝘰 𝘱𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘱𝘢𝘳𝘢 𝘰 𝘴𝘦𝘶 “𝘑𝘢𝘩𝘳𝘣𝘶𝘤𝘩 𝘥𝘦𝘳 𝘙𝘢𝘥𝘪𝘰𝘢𝘬𝘵𝘪𝘷𝘪𝘵𝘢̈𝘵 𝘶𝘯𝘥 𝘌𝘭𝘦𝘬𝘵𝘳𝘰𝘯𝘪𝘬”.
𝘗𝘰𝘳 𝘦𝘴𝘴𝘢 𝘢𝘭𝘵𝘶𝘳𝘢, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘤𝘰𝘮𝘦𝘤̧𝘢𝘷𝘢 𝘢 𝘧𝘪𝘤𝘢𝘳 𝘪𝘯𝘴𝘢𝘵𝘪𝘴𝘧𝘦𝘪𝘵𝘰 𝘤𝘰𝘮 𝘢 𝘭𝘪𝘮𝘪𝘵𝘢𝘤̧𝘢̃𝘰 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘢𝘰𝘴 𝘮𝘰𝘷𝘪𝘮𝘦𝘯𝘵𝘰𝘴 𝘪𝘯𝘦𝘳𝘤𝘪𝘢𝘪𝘴 𝘦 𝘢𝘯𝘴𝘪𝘢𝘷𝘢 𝘢𝘭𝘢𝘳𝘨𝘢́-𝘭𝘢 𝘢𝘰𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴 𝘢𝘤𝘦𝘭𝘦𝘳𝘢𝘥𝘰𝘴. 𝘕𝘦𝘴𝘴𝘢 𝘦́𝘱𝘰𝘤𝘢, 𝘲𝘶𝘢𝘯𝘥𝘰 𝘢𝘪𝘯𝘥𝘢 𝘵𝘳𝘢𝘣𝘢𝘭𝘩𝘢𝘷𝘢 𝘯𝘢 𝘙𝘦𝘱𝘢𝘳𝘵𝘪𝘤̧𝘢̃𝘰 𝘥𝘦 𝘗𝘢𝘵𝘦𝘯𝘵𝘦𝘴 𝘥𝘦 𝘉𝘦𝘳𝘯𝘢, 𝘵𝘦𝘷𝘦 “𝘰 𝘱𝘦𝘯𝘴𝘢𝘮𝘦𝘯𝘵𝘰 𝘮𝘢𝘪𝘴 𝘧𝘦𝘭𝘪𝘻” 𝘥𝘢 𝘴𝘶𝘢 𝘷𝘪𝘥𝘢, 𝘤𝘰𝘮𝘰 𝘳𝘦𝘷𝘦𝘭𝘰𝘶 𝘢𝘰 𝘴𝘦𝘶 𝘤𝘰𝘭𝘦𝘨𝘢 𝘦 𝘢𝘮𝘪𝘨𝘰 𝘔𝘪𝘤𝘩𝘦𝘭𝘦 𝘉𝘦𝘴𝘴𝘰. 𝘈 𝘪𝘨𝘶𝘢𝘭𝘥𝘢𝘥𝘦 𝘦𝘯𝘵𝘳𝘦 𝘢 𝘮𝘢𝘴𝘴𝘢 𝘪𝘯𝘦𝘳𝘤𝘪𝘢𝘭, 𝘳𝘦𝘴𝘱𝘰𝘯𝘴𝘢́𝘷𝘦𝘭 𝘱𝘦𝘭𝘢 𝘪𝘯𝘦́𝘳𝘤𝘪𝘢 𝘥𝘰𝘴 𝘤𝘰𝘳𝘱𝘰𝘴, 𝘦 𝘢 𝘮𝘢𝘴𝘴𝘢 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘤𝘪𝘰𝘯𝘢𝘭, 𝘲𝘶𝘦 𝘵𝘳𝘢𝘯𝘴𝘮𝘪𝘵𝘦 𝘢 𝘧𝘰𝘳𝘤̧𝘢 𝘥𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦, 𝘴𝘰́ 𝘱𝘰𝘥𝘦𝘳𝘪𝘢 𝘴𝘦𝘳 𝘶𝘮𝘢 𝘪𝘯𝘥𝘪𝘤𝘢𝘤̧𝘢̃𝘰 𝘥𝘦 𝘶𝘮𝘢 𝘤𝘰𝘯𝘦𝘹𝘢̃𝘰 𝘪́𝘯𝘵𝘪𝘮𝘢 𝘦𝘯𝘵𝘳𝘦 𝘪𝘯𝘦́𝘳𝘤𝘪𝘢 𝘦 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦. 𝘜𝘮 𝘢𝘴𝘵𝘳𝘰𝘯𝘢𝘶𝘵𝘢 𝘯𝘶𝘮𝘢 𝘯𝘢𝘷𝘦 𝘦𝘴𝘱𝘢𝘤𝘪𝘢𝘭 𝘧𝘦𝘤𝘩𝘢𝘥𝘢 𝘯𝘢̃𝘰 𝘦́ 𝘤𝘢𝘱𝘢𝘻 𝘥𝘦 𝘥𝘪𝘴𝘵𝘪𝘯𝘨𝘶𝘪𝘳 𝘴𝘦 𝘦𝘴𝘵𝘢́ 𝘦𝘮 𝘳𝘦𝘱𝘰𝘶𝘴𝘰 𝘯𝘶𝘮 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰 𝘰𝘶 𝘴𝘦 𝘦𝘴𝘵𝘢́ 𝘢𝘤𝘦𝘭𝘦𝘳𝘢𝘥𝘰 𝘯𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰 𝘭𝘪𝘷𝘳𝘦. 𝘈 𝘦𝘴𝘵𝘢 𝘳𝘦𝘭𝘢𝘤̧𝘢̃𝘰 𝘦𝘯𝘵𝘳𝘦 𝘮𝘰𝘷𝘪𝘮𝘦𝘯𝘵𝘰 𝘢𝘤𝘦𝘭𝘦𝘳𝘢𝘥𝘰 𝘦 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘤𝘩𝘢𝘮𝘰𝘶 𝘗𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘥𝘢 𝘌𝘲𝘶𝘪𝘷𝘢𝘭𝘦̂𝘯𝘤𝘪𝘢 (𝘗𝘌).
𝘔𝘢𝘪𝘴 𝘵𝘢𝘳𝘥𝘦 𝘩𝘢𝘷𝘦𝘳𝘪𝘢 𝘥𝘦 𝘥𝘦𝘴𝘤𝘳𝘦𝘷𝘦𝘳 𝘦𝘴𝘴𝘦 𝘮𝘰𝘮𝘦𝘯𝘵𝘰 𝘱𝘳𝘰𝘥𝘪𝘨𝘪𝘰𝘴𝘰 𝘯𝘢 𝘴𝘶𝘢 𝘭𝘪𝘤̧𝘢̃𝘰 𝘯𝘢 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘪𝘥𝘢𝘥𝘦 𝘥𝘦 𝘘𝘶𝘪𝘰𝘵𝘰, 𝘯𝘰 𝘑𝘢𝘱𝘢̃𝘰, 𝘦𝘮 𝟣𝟫𝟤𝟤: “𝘋𝘦 𝘳𝘦𝘱𝘦𝘯𝘵𝘦, 𝘶𝘮 𝘱𝘦𝘯𝘴𝘢𝘮𝘦𝘯𝘵𝘰 𝘢𝘴𝘴𝘢𝘭𝘵𝘰𝘶-𝘮𝘦: 𝘴𝘦 𝘶𝘮𝘢 𝘱𝘦𝘴𝘴𝘰𝘢 𝘤𝘢𝘪 𝘦𝘮 𝘲𝘶𝘦𝘥𝘢 𝘭𝘪𝘷𝘳𝘦 𝘯𝘢̃𝘰 𝘴𝘦𝘯𝘵𝘦 𝘰 𝘴𝘦𝘶 𝘱𝘳𝘰́𝘱𝘳𝘪𝘰 𝘱𝘦𝘴𝘰. 𝘍𝘪𝘲𝘶𝘦𝘪 𝘢𝘣𝘪𝘴𝘮𝘢𝘥𝘰. 𝘌𝘴𝘵𝘦 𝘴𝘪𝘮𝘱𝘭𝘦𝘴 𝘱𝘦𝘯𝘴𝘢𝘮𝘦𝘯𝘵𝘰 𝘱𝘳𝘰𝘷𝘰𝘤𝘰𝘶-𝘮𝘦 𝘶𝘮𝘢 𝘱𝘳𝘰𝘧𝘶𝘯𝘥𝘢 𝘪𝘮𝘱𝘳𝘦𝘴𝘴𝘢̃𝘰. 𝘐𝘮𝘱𝘦𝘭𝘪𝘶-𝘮𝘦 𝘱𝘢𝘳𝘢 𝘶𝘮𝘢 𝘯𝘰𝘷𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘥𝘢 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘤̧𝘢̃𝘰.”
𝘊𝘰𝘮 𝘣𝘢𝘴𝘦 𝘯𝘦𝘴𝘵𝘦 𝘱𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘢𝘤𝘳𝘦𝘥𝘪𝘵𝘰𝘶 𝘲𝘶𝘦 𝘴𝘦𝘳𝘪𝘢 𝘤𝘢𝘱𝘢𝘻 𝘥𝘦 𝘤𝘰𝘯𝘴𝘵𝘳𝘶𝘪𝘳 𝘶𝘮𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘱𝘢𝘳𝘢 𝘴𝘶𝘣𝘴𝘵𝘪𝘵𝘶𝘪𝘳 𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘥𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦 𝘥𝘦 𝘕𝘦𝘸𝘵𝘰𝘯, 𝘦 𝘭𝘪𝘨𝘰𝘶 𝘪𝘮𝘦𝘥𝘪𝘢𝘵𝘢𝘮𝘦𝘯𝘵𝘦 𝘰 𝘱𝘳𝘰𝘣𝘭𝘦𝘮𝘢 𝘥𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦 𝘢𝘰 𝘱𝘳𝘰𝘣𝘭𝘦𝘮𝘢 𝘥𝘢 𝘨𝘦𝘯𝘦𝘳𝘢𝘭𝘪𝘻𝘢𝘤̧𝘢̃𝘰 (𝘥𝘰 𝘱𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰) 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘢 𝘵𝘰𝘥𝘰𝘴 𝘰𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴. 𝘌́ 𝘯𝘦𝘴𝘴𝘦 𝘢𝘳𝘵𝘪𝘨𝘰 𝘥𝘦 𝟣𝟫𝟢𝟩 𝘲𝘶𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘱𝘶𝘣𝘭𝘪𝘤𝘢 𝘱𝘦𝘭𝘢 𝘱𝘳𝘪𝘮𝘦𝘪𝘳𝘢 𝘷𝘦𝘻 𝘢𝘴 𝘴𝘶𝘢𝘴 𝘳𝘦𝘧𝘭𝘦𝘹𝘰̃𝘦𝘴 𝘴𝘰𝘣𝘳𝘦 𝘢 𝘳𝘦𝘭𝘢𝘤̧𝘢̃𝘰 𝘦𝘯𝘵𝘳𝘦 𝘰 𝘱𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘦 𝘢 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘤̧𝘢̃𝘰. 𝘔𝘢𝘴 𝘴𝘰́ 𝘷𝘰𝘭𝘵𝘢 𝘢 𝘱𝘦𝘯𝘴𝘢𝘳 𝘯𝘦𝘴𝘵𝘦𝘴 𝘱𝘳𝘰𝘣𝘭𝘦𝘮𝘢𝘴 𝘦𝘮 𝟣𝟫𝟣𝟣, 𝘫𝘢́ 𝘤𝘰𝘮𝘰 𝘱𝘳𝘰𝘧𝘦𝘴𝘴𝘰𝘳 𝘤𝘢𝘵𝘦𝘥𝘳𝘢́𝘵𝘪𝘤𝘰 𝘥𝘦 𝘍𝘪́𝘴𝘪𝘤𝘢 𝘛𝘦𝘰́𝘳𝘪𝘤𝘢 𝘯𝘢 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘪𝘥𝘢𝘥𝘦 𝘥𝘦 𝘗𝘳𝘢𝘨𝘢.
𝘛𝘢𝘯𝘵𝘰 𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰 𝘦𝘶𝘤𝘭𝘪𝘥𝘪𝘢𝘯𝘰 𝘤𝘰𝘮𝘰 𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘳𝘦𝘴𝘵𝘳𝘪𝘵𝘢 𝘴𝘢̃𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰𝘴 𝘱𝘭𝘢𝘯𝘰𝘴. 𝘈𝘰 𝘱𝘳𝘰𝘤𝘶𝘳𝘢𝘳 𝘤𝘰𝘮𝘱𝘢𝘵𝘪𝘣𝘪𝘭𝘪𝘻𝘢𝘳 𝘢 𝘪𝘯𝘵𝘦𝘳𝘢𝘤̧𝘢̃𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘢 𝘤𝘰𝘮 𝘢𝘴 𝘪𝘥𝘦𝘪𝘢𝘴 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘳𝘦𝘴𝘵𝘳𝘪𝘵𝘢, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘦́ 𝘭𝘦𝘷𝘢𝘥𝘰 𝘢 𝘳𝘦𝘯𝘶𝘯𝘤𝘪𝘢𝘳 𝘢𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰 𝘱𝘭𝘢𝘯𝘰. 𝘖 𝘴𝘦𝘶 𝘳𝘢𝘤𝘪𝘰𝘤𝘪́𝘯𝘪𝘰 𝘧𝘰𝘪 𝘰 𝘴𝘦𝘨𝘶𝘪𝘯𝘵𝘦: 𝘯𝘢 𝘱𝘳𝘦𝘴𝘦𝘯𝘤̧𝘢 𝘥𝘦 𝘶𝘮 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰 𝘦́ 𝘯𝘦𝘤𝘦𝘴𝘴𝘢́𝘳𝘪𝘰 𝘪𝘯𝘤𝘭𝘶𝘪𝘳 𝘵𝘰𝘥𝘰𝘴 𝘰𝘴 𝘵𝘪𝘱𝘰𝘴 𝘥𝘦 𝘮𝘰𝘷𝘪𝘮𝘦𝘯𝘵𝘰𝘴 𝘦 𝘯𝘢̃𝘰 𝘢𝘱𝘦𝘯𝘢𝘴 𝘰𝘴 𝘮𝘰𝘷𝘪𝘮𝘦𝘯𝘵𝘰𝘴 𝘶𝘯𝘪𝘧𝘰𝘳𝘮𝘦𝘴. 𝘌́, 𝘱𝘰𝘪𝘴, 𝘯𝘦𝘤𝘦𝘴𝘴𝘢́𝘳𝘪𝘰 𝘨𝘦𝘯𝘦𝘳𝘢𝘭𝘪𝘻𝘢𝘳 𝘰 𝘱𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘥𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘢 𝘵𝘰𝘥𝘰𝘴 𝘰𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴 𝘥𝘦 𝘶𝘮 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰. 𝘊𝘰𝘮𝘰 𝘱𝘳𝘰𝘤𝘦𝘥𝘦𝘳?
𝘚𝘪𝘨𝘢𝘮𝘰𝘴 𝘰 𝘱𝘦𝘯𝘴𝘢𝘮𝘦𝘯𝘵𝘰 𝘥𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯. 𝘈 𝘪𝘯𝘵𝘦𝘳𝘢𝘤̧𝘢̃𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘢 𝘵𝘦𝘮 𝘶𝘮𝘢 𝘯𝘢𝘵𝘶𝘳𝘦𝘻𝘢 𝘶́𝘯𝘪𝘤𝘢 𝘦𝘯𝘵𝘳𝘦 𝘵𝘰𝘥𝘢𝘴 𝘢𝘴 𝘧𝘰𝘳𝘤̧𝘢𝘴: 𝘢 𝘲𝘶𝘦𝘥𝘢 𝘥𝘰𝘴 𝘤𝘰𝘳𝘱𝘰𝘴 𝘦́ 𝘪𝘯𝘥𝘦𝘱𝘦𝘯𝘥𝘦𝘯𝘵𝘦 𝘥𝘢 𝘴𝘶𝘢 𝘮𝘢𝘴𝘴𝘢 𝘰𝘶 𝘥𝘢 𝘴𝘶𝘢 𝘤𝘰𝘯𝘴𝘵𝘪𝘵𝘶𝘪𝘤̧𝘢̃𝘰. 𝘐𝘴𝘵𝘰 𝘴𝘶𝘨𝘦𝘳𝘦 𝘲𝘶𝘦 𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦 𝘯𝘢̃𝘰 𝘦́ 𝘳𝘦𝘢𝘭𝘮𝘦𝘯𝘵𝘦 𝘶𝘮𝘢 𝘧𝘰𝘳𝘤̧𝘢, 𝘮𝘢𝘴 𝘶𝘮𝘢 𝘱𝘳𝘰𝘱𝘳𝘪𝘦𝘥𝘢𝘥𝘦 𝘨𝘦𝘰𝘮𝘦́𝘵𝘳𝘪𝘤𝘢 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰(-𝘵𝘦𝘮𝘱𝘰). 𝘌́ 𝘢𝘲𝘶𝘪 𝘲𝘶𝘦 𝘴𝘶𝘳𝘨𝘦 𝘢 𝘪𝘥𝘦𝘪𝘢 𝘳𝘦𝘷𝘰𝘭𝘶𝘤𝘪𝘰𝘯𝘢́𝘳𝘪𝘢 𝘥𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯: 𝘰𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴 𝘦𝘮 𝘲𝘶𝘦𝘥𝘢 𝘭𝘪𝘷𝘳𝘦 𝘯𝘶𝘮 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰 𝘪𝘥𝘦𝘯𝘵𝘪𝘧𝘪𝘤𝘢𝘮-𝘴𝘦 𝘤𝘰𝘮 𝘰𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴 𝘪𝘯𝘦𝘳𝘤𝘪𝘢𝘪𝘴 𝘥𝘢 𝘛𝘙𝘙 𝘯𝘰 𝘲𝘶𝘦 𝘥𝘪𝘻 𝘳𝘦𝘴𝘱𝘦𝘪𝘵𝘰 𝘢̀𝘴 𝘴𝘶𝘢𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘤̧𝘰̃𝘦𝘴 𝘭𝘰𝘤𝘢𝘪𝘴. 𝘔𝘢𝘴, 𝘢𝘰 𝘤𝘰𝘯𝘵𝘳𝘢́𝘳𝘪𝘰 𝘥𝘢 𝘛𝘙𝘙, 𝘥𝘰𝘪𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳𝘦𝘴 𝘦𝘮 𝘲𝘶𝘦𝘥𝘢 𝘭𝘪𝘷𝘳𝘦 𝘯𝘢̃𝘰 𝘮𝘢𝘯𝘵𝘦̂𝘮 𝘶𝘮𝘢 𝘷𝘦𝘭𝘰𝘤𝘪𝘥𝘢𝘥𝘦 𝘶𝘯𝘪𝘧𝘰𝘳𝘮𝘦 𝘦𝘯𝘵𝘳𝘦 𝘴𝘪 𝘥𝘦𝘷𝘪𝘥𝘰 𝘢𝘰𝘴 𝘦𝘧𝘦𝘪𝘵𝘰𝘴 𝘯𝘢̃𝘰 𝘭𝘰𝘤𝘢𝘪𝘴 𝘥𝘰 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰. 𝘙𝘦𝘢𝘭𝘮𝘦𝘯𝘵𝘦, 𝘥𝘰𝘪𝘴 𝘤𝘰𝘳𝘱𝘰𝘴 𝘦𝘮 𝘲𝘶𝘦𝘥𝘢 𝘭𝘪𝘷𝘳𝘦 𝘢̀ 𝘴𝘶𝘱𝘦𝘳𝘧𝘪́𝘤𝘪𝘦 𝘥𝘢 𝘛𝘦𝘳𝘳𝘢 𝘯𝘢̃𝘰 𝘥𝘦𝘴𝘤𝘳𝘦𝘷𝘦𝘮 𝘵𝘳𝘢𝘫𝘦𝘵𝘰́𝘳𝘪𝘢𝘴 𝘦𝘹𝘢𝘵𝘢𝘮𝘦𝘯𝘵𝘦 𝘱𝘢𝘳𝘢𝘭𝘦𝘭𝘢𝘴, 𝘱𝘰𝘪𝘴 𝘦𝘴𝘴𝘢𝘴 𝘵𝘳𝘢𝘫𝘦𝘵𝘰́𝘳𝘪𝘢𝘴 𝘤𝘰𝘯𝘷𝘦𝘳𝘨𝘦𝘮 𝘱𝘢𝘳𝘢 𝘰 𝘤𝘦𝘯𝘵𝘳𝘰 𝘥𝘦 𝘮𝘢𝘴𝘴𝘢 𝘥𝘢 𝘛𝘦𝘳𝘳𝘢, 𝘦𝘮𝘣𝘰𝘳𝘢, 𝘢 𝘶𝘮𝘢 𝘦𝘴𝘤𝘢𝘭𝘢 𝘭𝘰𝘤𝘢𝘭, 𝘢𝘴 𝘵𝘳𝘢𝘫𝘦𝘵𝘰́𝘳𝘪𝘢𝘴 𝘴𝘦𝘫𝘢𝘮 𝘲𝘶𝘢𝘴𝘦 𝘱𝘢𝘳𝘢𝘭𝘦𝘭𝘢𝘴, 𝘲𝘶𝘢𝘯𝘥𝘰 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘢𝘴 𝘯𝘶𝘮 𝘱𝘦𝘲𝘶𝘦𝘯𝘰 𝘪𝘯𝘵𝘦𝘳𝘷𝘢𝘭𝘰 𝘥𝘦 𝘵𝘦𝘮𝘱𝘰.
𝘗𝘢𝘳𝘢 𝘫𝘶𝘴𝘵𝘪𝘧𝘪𝘤𝘢𝘳 𝘦𝘴𝘵𝘢𝘴 𝘥𝘪𝘧𝘦𝘳𝘦𝘯𝘤̧𝘢𝘴, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘪𝘥𝘦𝘯𝘵𝘪𝘧𝘪𝘤𝘢 𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦 𝘤𝘰𝘮 𝘶𝘮𝘢 𝘮𝘰𝘥𝘪𝘧𝘪𝘤𝘢𝘤̧𝘢̃𝘰 𝘦𝘮 𝘳𝘦𝘭𝘢𝘤̧𝘢̃𝘰 𝘢̀ 𝘨𝘦𝘰𝘮𝘦𝘵𝘳𝘪𝘢 𝘦𝘶𝘤𝘭𝘪𝘥𝘪𝘢𝘯𝘢: 𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦 𝘱𝘳𝘰𝘥𝘶𝘻 𝘶𝘮𝘢 𝘤𝘶𝘳𝘷𝘢𝘵𝘶𝘳𝘢 𝘯𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰. 𝘈𝘴 𝘵𝘳𝘢𝘫𝘦𝘵𝘰́𝘳𝘪𝘢𝘴 𝘥𝘰𝘴 𝘤𝘰𝘳𝘱𝘰𝘴 𝘦𝘮 𝘲𝘶𝘦𝘥𝘢 𝘭𝘪𝘷𝘳𝘦 𝘴𝘦𝘳𝘢̃𝘰 𝘢𝘴 𝘨𝘦𝘰𝘥𝘦́𝘴𝘪𝘤𝘢𝘴, 𝘰𝘶 𝘴𝘦𝘫𝘢, 𝘢𝘴 𝘮𝘦𝘯𝘰𝘳𝘦𝘴 𝘥𝘪𝘴𝘵𝘢̂𝘯𝘤𝘪𝘢𝘴 𝘲𝘶𝘦 𝘶𝘯𝘦𝘮 𝘥𝘰𝘪𝘴 𝘱𝘰𝘯𝘵𝘰𝘴 𝘥𝘦𝘴𝘵𝘦 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰 𝘤𝘶𝘳𝘷𝘰. 𝘔𝘢𝘴 𝘢𝘨𝘰𝘳𝘢 𝘢𝘴 𝘨𝘦𝘰𝘥𝘦́𝘴𝘪𝘤𝘢𝘴 𝘫𝘢́ 𝘯𝘢̃𝘰 𝘴𝘢̃𝘰 𝘭𝘪𝘯𝘩𝘢𝘴 𝘳𝘦𝘤𝘵𝘢𝘴, 𝘤𝘰𝘮𝘰 𝘦𝘳𝘢𝘮 𝘯𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰 𝘱𝘭𝘢𝘯𝘰, 𝘮𝘢𝘴 𝘴𝘪𝘮 𝘢𝘴 𝘭𝘪𝘯𝘩𝘢𝘴 “𝘮𝘢𝘪𝘴 𝘥𝘪𝘳𝘦𝘪𝘵𝘢𝘴” 𝘲𝘶𝘦 𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰 𝘤𝘶𝘳𝘷𝘰 𝘢𝘥𝘮𝘪𝘵𝘦. 𝘗𝘰𝘳 𝘦𝘹𝘦𝘮𝘱𝘭𝘰, 𝘯𝘢 𝘴𝘶𝘱𝘦𝘳𝘧𝘪́𝘤𝘪𝘦 𝘥𝘦 𝘶𝘮𝘢 𝘦𝘴𝘧𝘦𝘳𝘢 𝘢𝘴 𝘨𝘦𝘰𝘥𝘦́𝘴𝘪𝘤𝘢𝘴 𝘴𝘢̃𝘰 𝘰𝘴 𝘤𝘪́𝘳𝘤𝘶𝘭𝘰𝘴 𝘮𝘢́𝘹𝘪𝘮𝘰𝘴: 𝘰𝘴 𝘮𝘦𝘳𝘪𝘥𝘪𝘢𝘯𝘰𝘴 𝘦 𝘰 𝘦𝘲𝘶𝘢𝘥𝘰𝘳.
𝘌́ 𝘪𝘯𝘵𝘦𝘳𝘦𝘴𝘴𝘢𝘯𝘵𝘦 𝘴𝘦𝘨𝘶𝘪𝘳 𝘰 𝘤𝘢𝘮𝘪𝘯𝘩𝘰 𝘲𝘶𝘦 𝘭𝘦𝘷𝘰𝘶 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘢 𝘤𝘰𝘯𝘴𝘪𝘥𝘦𝘳𝘢𝘳 𝘨𝘦𝘰𝘮𝘦𝘵𝘳𝘪𝘢𝘴 𝘯𝘢̃𝘰 𝘦𝘶𝘤𝘭𝘪𝘥𝘪𝘢𝘯𝘢𝘴. 𝘌𝘮 𝘱𝘢𝘳𝘵𝘪𝘤𝘶𝘭𝘢𝘳, 𝘦𝘹𝘢𝘮𝘪𝘯𝘰𝘶 𝘢 𝘴𝘪𝘵𝘶𝘢𝘤̧𝘢̃𝘰 𝘥𝘦 𝘶𝘮 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘯𝘶𝘮 𝘥𝘪𝘴𝘤𝘰 𝘢 𝘳𝘰𝘥𝘢𝘳 𝘦𝘮 𝘵𝘰𝘳𝘯𝘰 𝘥𝘦 𝘶𝘮 𝘦𝘪𝘹𝘰 𝘲𝘶𝘦 𝘱𝘢𝘴𝘴𝘢 𝘱𝘦𝘭𝘰 𝘤𝘦𝘯𝘵𝘳𝘰. 𝘈𝘱𝘦𝘭𝘢𝘯𝘥𝘰 𝘢𝘰 𝘗𝘳𝘪𝘯𝘤𝘪́𝘱𝘪𝘰 𝘥𝘢 𝘌𝘲𝘶𝘪𝘷𝘢𝘭𝘦̂𝘯𝘤𝘪𝘢 (𝘗𝘌), 𝘰𝘣𝘴𝘦𝘳𝘷𝘰𝘶 𝘲𝘶𝘦 𝘰 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘦𝘮 𝘳𝘰𝘵𝘢𝘤̧𝘢̃𝘰 𝘤𝘰𝘮 𝘰 𝘥𝘪𝘴𝘤𝘰 𝘱𝘰𝘥𝘪𝘢 𝘤𝘰𝘯𝘴𝘪𝘥𝘦𝘳𝘢𝘳-𝘴𝘦 𝘦𝘮 𝘳𝘦𝘱𝘰𝘶𝘴𝘰 𝘦, 𝘤𝘰𝘮𝘰 𝘵𝘢𝘭, 𝘢𝘵𝘳𝘪𝘣𝘶𝘪𝘳 𝘢 𝘧𝘰𝘳𝘤̧𝘢 𝘤𝘦𝘯𝘵𝘳𝘪́𝘧𝘶𝘨𝘢 𝘥𝘦𝘷𝘪𝘥𝘢 𝘢̀ 𝘢𝘤𝘦𝘭𝘦𝘳𝘢𝘤̧𝘢̃𝘰 𝘤𝘦𝘯𝘵𝘳𝘪́𝘱𝘦𝘵𝘢 𝘢̀ 𝘦𝘹𝘪𝘴𝘵𝘦̂𝘯𝘤𝘪𝘢 𝘥𝘦 𝘶𝘮 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘤𝘪𝘰𝘯𝘢𝘭 𝘤𝘦𝘯𝘵𝘳𝘪́𝘧𝘶𝘨𝘰. 𝘍𝘰𝘳𝘮𝘶𝘭𝘰𝘶 𝘦𝘮 𝘴𝘦𝘨𝘶𝘪𝘥𝘢 𝘢 𝘲𝘶𝘦𝘴𝘵𝘢̃𝘰: 𝘲𝘶𝘢𝘭 𝘢 𝘳𝘢𝘻𝘢̃𝘰 𝘦𝘯𝘵𝘳𝘦 𝘰 𝘱𝘦𝘳𝘪́𝘮𝘦𝘵𝘳𝘰 𝘥𝘰 𝘥𝘪𝘴𝘤𝘰 𝘦 𝘰 𝘴𝘦𝘶 𝘳𝘢𝘪𝘰 𝘱𝘢𝘳𝘢 𝘶𝘮 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘭𝘪𝘨𝘢𝘥𝘰 𝘢𝘰 𝘥𝘪𝘴𝘤𝘰 𝘦 𝘱𝘢𝘳𝘢 𝘶𝘮 𝘰𝘶𝘵𝘳𝘰 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘪𝘯𝘦𝘳𝘤𝘪𝘢𝘭 𝘱𝘳𝘰́𝘹𝘪𝘮𝘰 𝘢 𝘷𝘦𝘳 𝘰 𝘥𝘪𝘴𝘤𝘰 𝘢 𝘳𝘰𝘥𝘢𝘳?
𝘖 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘪𝘯𝘦𝘳𝘤𝘪𝘢𝘭 𝘥𝘢𝘳𝘢́ 𝘢 𝘳𝘦𝘴𝘱𝘰𝘴𝘵𝘢 𝘥𝘢 𝘨𝘦𝘰𝘮𝘦𝘵𝘳𝘪𝘢 𝘦𝘶𝘤𝘭𝘪𝘥𝘪𝘢𝘯𝘢 𝘦 𝘥𝘪𝘳𝘢́ 𝘲𝘶𝘦 𝘦́ 𝟤π; 𝘮𝘢𝘴 𝘰 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘦𝘮 𝘳𝘰𝘵𝘢𝘤̧𝘢̃𝘰, 𝘴𝘰𝘭𝘪𝘥𝘢́𝘳𝘪𝘰 𝘤𝘰𝘮 𝘰 𝘥𝘪𝘴𝘤𝘰, 𝘱𝘢𝘳𝘢 𝘲𝘶𝘦𝘮 𝘢𝘴 𝘳𝘦́𝘨𝘶𝘢𝘴 𝘤𝘰𝘭𝘰𝘤𝘢𝘥𝘢𝘴 𝘢𝘰 𝘭𝘰𝘯𝘨𝘰 𝘥𝘢 𝘤𝘪𝘳𝘤𝘶𝘯𝘧𝘦𝘳𝘦̂𝘯𝘤𝘪𝘢 𝘥𝘰 𝘥𝘪𝘴𝘤𝘰 𝘦𝘴𝘵𝘢̃𝘰 𝘤𝘰𝘯𝘵𝘳𝘢𝘪́𝘥𝘢𝘴 𝘯𝘰 𝘴𝘦𝘯𝘵𝘪𝘥𝘰 𝘥𝘰 𝘮𝘰𝘷𝘪𝘮𝘦𝘯𝘵𝘰, 𝘥𝘪𝘳𝘢́ 𝘲𝘶𝘦 𝘢 𝘳𝘢𝘻𝘢̃𝘰 𝘦́ 𝘮𝘢𝘪𝘰𝘳 𝘥𝘰 𝘲𝘶𝘦 𝟤π, 𝘷𝘪𝘴𝘵𝘰 𝘲𝘶𝘦 𝘰 𝘳𝘢𝘪𝘰 𝘥𝘰 𝘥𝘪𝘴𝘤𝘰 𝘧𝘪𝘤𝘢 𝘪𝘯𝘢𝘭𝘵𝘦𝘳𝘢𝘥𝘰 𝘦 𝘴𝘢̃𝘰 𝘯𝘦𝘤𝘦𝘴𝘴𝘢́𝘳𝘪𝘢𝘴 𝘮𝘢𝘪𝘴 𝘳𝘦́𝘨𝘶𝘢𝘴 𝘱𝘢𝘳𝘢 𝘱𝘦𝘳𝘧𝘢𝘻𝘦𝘳 𝘰 𝘱𝘦𝘳𝘪́𝘮𝘦𝘵𝘳𝘰 𝘥𝘰 𝘥𝘪𝘴𝘤𝘰. 𝘐𝘴𝘵𝘰 𝘴𝘪𝘨𝘯𝘪𝘧𝘪𝘤𝘢 𝘲𝘶𝘦, 𝘱𝘢𝘳𝘢 𝘦𝘴𝘴𝘦 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳, 𝘢 𝘨𝘦𝘰𝘮𝘦𝘵𝘳𝘪𝘢 𝘦𝘴𝘱𝘢𝘤𝘪𝘢𝘭 𝘥𝘰 𝘥𝘪𝘴𝘤𝘰 𝘦𝘮 𝘳𝘰𝘵𝘢𝘤̧𝘢̃𝘰 𝘯𝘢̃𝘰 𝘦́ 𝘦𝘶𝘤𝘭𝘪𝘥𝘪𝘢𝘯𝘢.
𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘦́ 𝘢𝘴𝘴𝘪𝘮 𝘭𝘦𝘷𝘢𝘥𝘰 𝘢 𝘱𝘦𝘯𝘴𝘢𝘳 𝘲𝘶𝘦 𝘱𝘢𝘳𝘢 𝘶𝘮 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘥𝘰𝘳 𝘯𝘶𝘮 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘤𝘪𝘰𝘯𝘢𝘭, 𝘥𝘦 𝘢𝘤𝘰𝘳𝘥𝘰 𝘤𝘰𝘮 𝘰 𝘗𝘌, 𝘢 𝘨𝘦𝘰𝘮𝘦𝘵𝘳𝘪𝘢 𝘦𝘴𝘱𝘢𝘤𝘪𝘢𝘭 𝘵𝘢𝘮𝘣𝘦́𝘮 𝘯𝘢̃𝘰 𝘥𝘦𝘷𝘦𝘳𝘢́, 𝘦𝘮 𝘨𝘦𝘳𝘢𝘭, 𝘴𝘦𝘳 𝘦𝘶𝘤𝘭𝘪𝘥𝘪𝘢𝘯𝘢. 𝘈 𝘢𝘯𝘢́𝘭𝘪𝘴𝘦 𝘥𝘦𝘴𝘵𝘦 𝘱𝘳𝘰𝘣𝘭𝘦𝘮𝘢 𝘥𝘦𝘷𝘦 𝘵𝘦𝘳 𝘤𝘰𝘯𝘵𝘳𝘪𝘣𝘶𝘪́𝘥𝘰 𝘥𝘦𝘤𝘪𝘴𝘪𝘷𝘢𝘮𝘦𝘯𝘵𝘦 𝘱𝘢𝘳𝘢 𝘢 𝘪𝘥𝘦𝘪𝘢 𝘥𝘦 𝘳𝘦𝘱𝘳𝘦𝘴𝘦𝘯𝘵𝘢𝘳 𝘢 𝘨𝘳𝘢𝘷𝘪𝘥𝘢𝘥𝘦 𝘱𝘦𝘭𝘢 𝘤𝘶𝘳𝘷𝘢𝘵𝘶𝘳𝘢 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰.
𝘈𝘰 𝘷𝘰𝘭𝘵𝘢𝘳 𝘢 𝘡𝘶𝘳𝘪𝘲𝘶𝘦 𝘦𝘮 𝟣𝟫𝟣𝟤, 𝘤𝘰𝘮𝘰 𝘱𝘳𝘰𝘧𝘦𝘴𝘴𝘰𝘳 𝘥𝘦 𝘍𝘪́𝘴𝘪𝘤𝘢 𝘛𝘦𝘰́𝘳𝘪𝘤𝘢 𝘯𝘢 𝘗𝘰𝘭𝘪𝘵𝘦́𝘤𝘯𝘪𝘤𝘢, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘮𝘦𝘳𝘨𝘶𝘭𝘩𝘢 𝘱𝘳𝘰𝘧𝘶𝘯𝘥𝘢𝘮𝘦𝘯𝘵𝘦 𝘯𝘰 𝘦𝘴𝘵𝘶𝘥𝘰 𝘥𝘢𝘴 𝘨𝘦𝘰𝘮𝘦𝘵𝘳𝘪𝘢𝘴 𝘥𝘰𝘴 𝘦𝘴𝘱𝘢𝘤̧𝘰𝘴 𝘤𝘶𝘳𝘷𝘰𝘴 𝘤𝘰𝘮 𝘢 𝘢𝘫𝘶𝘥𝘢 𝘥𝘰 𝘴𝘦𝘶 𝘢𝘯𝘵𝘪𝘨𝘰 𝘤𝘰𝘭𝘦𝘨𝘢, 𝘢𝘨𝘰𝘳𝘢 𝘥𝘪𝘳𝘦𝘵𝘰𝘳 𝘥𝘢 𝘧𝘢𝘤𝘶𝘭𝘥𝘢𝘥𝘦, 𝘔𝘢𝘳𝘤𝘦𝘭 𝘎𝘳𝘰𝘴𝘴𝘮𝘢𝘯𝘯. 𝘌𝘮 𝟣𝟫𝟣𝟥, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘦 𝘎𝘳𝘰𝘴𝘴𝘮𝘢𝘯𝘯 𝘦𝘴𝘤𝘳𝘦𝘷𝘦𝘮 𝘶𝘮 𝘢𝘳𝘵𝘪𝘨𝘰 𝘯𝘰 𝘲𝘶𝘢𝘭 𝘢𝘷𝘢𝘯𝘤̧𝘢𝘮 𝘶𝘮𝘢 𝘪𝘥𝘦𝘪𝘢 𝘴𝘪𝘮𝘱𝘭𝘦𝘴: 𝘰 𝘲𝘶𝘦 𝘯𝘰́𝘴 𝘱𝘦𝘯𝘴𝘢𝘮𝘰𝘴 𝘴𝘦𝘳𝘦𝘮 𝘢𝘴 𝘧𝘰𝘳𝘤̧𝘢𝘴 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘢𝘴 𝘯𝘢̃𝘰 𝘦́ 𝘰𝘶𝘵𝘳𝘢 𝘤𝘰𝘪𝘴𝘢 𝘴𝘦𝘯𝘢̃𝘰 𝘢 𝘦𝘹𝘱𝘳𝘦𝘴𝘴𝘢̃𝘰 𝘥𝘢 𝘤𝘶𝘳𝘷𝘢𝘵𝘶𝘳𝘢 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰. 𝘔𝘢𝘴 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘦 𝘎𝘳𝘰𝘴𝘴𝘮𝘢𝘯𝘯 𝘯𝘢̃𝘰 𝘤𝘰𝘯𝘴𝘦𝘨𝘶𝘪𝘳𝘢𝘮 𝘦𝘯𝘤𝘰𝘯𝘵𝘳𝘢𝘳 𝘢𝘴 𝘷𝘦𝘳𝘥𝘢𝘥𝘦𝘪𝘳𝘢𝘴 𝘦𝘲𝘶𝘢𝘤̧𝘰̃𝘦𝘴 𝘲𝘶𝘦 𝘳𝘦𝘭𝘢𝘤𝘪𝘰𝘯𝘢𝘮 𝘢 𝘤𝘶𝘳𝘷𝘢𝘵𝘶𝘳𝘢 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰 𝘤𝘰𝘮 𝘢 𝘮𝘢𝘴𝘴𝘢-𝘦𝘯𝘦𝘳𝘨𝘪𝘢 𝘲𝘶𝘦 𝘯𝘦𝘭𝘦 𝘦𝘹𝘪𝘴𝘵𝘦.
𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘤𝘰𝘯𝘵𝘪𝘯𝘶𝘰𝘶 𝘢 𝘵𝘳𝘢𝘣𝘢𝘭𝘩𝘢𝘳 𝘯𝘦𝘴𝘵𝘦 𝘱𝘳𝘰𝘣𝘭𝘦𝘮𝘢 𝘲𝘶𝘢𝘯𝘥𝘰 𝘧𝘰𝘪 𝘱𝘢𝘳𝘢 𝘢 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘪𝘥𝘢𝘥𝘦 𝘥𝘦 𝘉𝘦𝘳𝘭𝘪𝘮, 𝘦𝘮 𝟣𝟫𝟣𝟦, 𝘢 𝘤𝘰𝘯𝘷𝘪𝘵𝘦 𝘥𝘦 𝘔𝘢𝘹 𝘗𝘭𝘢𝘯𝘤𝘬. 𝘈𝘰 𝘥𝘦𝘴𝘤𝘳𝘦𝘷𝘦𝘳 𝘰 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰 𝘢𝘵𝘳𝘢𝘷𝘦́𝘴 𝘥𝘢 𝘤𝘶𝘳𝘷𝘢𝘵𝘶𝘳𝘢 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰, 𝘢 𝘛𝘦𝘰𝘳𝘪𝘢 𝘥𝘢 𝘙𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘎𝘦𝘳𝘢𝘭 (𝘛𝘙𝘎) 𝘵𝘳𝘢𝘯𝘴𝘧𝘰𝘳𝘮𝘰𝘶 𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰-𝘵𝘦𝘮𝘱𝘰 𝘯𝘶𝘮 𝘱𝘢𝘳𝘵𝘪𝘤𝘪𝘱𝘢𝘯𝘵𝘦 𝘢𝘵𝘪𝘷𝘰 𝘯𝘢 𝘥𝘪𝘯𝘢̂𝘮𝘪𝘤𝘢 𝘥𝘰 𝘤𝘰𝘴𝘮𝘰𝘴. 𝘍𝘪𝘯𝘢𝘭𝘮𝘦𝘯𝘵𝘦, 𝘦𝘮 𝘕𝘰𝘷𝘦𝘮𝘣𝘳𝘰 𝘥𝘦 𝟣𝟫𝟣𝟧, 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘤𝘩𝘦𝘨𝘰𝘶 𝘢̀𝘴 𝘦𝘲𝘶𝘢𝘤̧𝘰̃𝘦𝘴 𝘥𝘰 𝘤𝘢𝘮𝘱𝘰 𝘨𝘳𝘢𝘷𝘪́𝘵𝘪𝘤𝘰 𝘦 𝘮𝘰𝘴𝘵𝘳𝘰𝘶 𝘤𝘰𝘮𝘰 𝘢 𝘱𝘢𝘳𝘵𝘪𝘳 𝘥𝘦𝘭𝘢𝘴 𝘴𝘦 𝘱𝘰𝘥𝘦 𝘦𝘹𝘱𝘭𝘪𝘤𝘢𝘳 𝘰 𝘢𝘷𝘢𝘯𝘤̧𝘰 𝘥𝘰 𝘱𝘦𝘳𝘪𝘦́𝘭𝘪𝘰 𝘥𝘦 𝘔𝘦𝘳𝘤𝘶́𝘳𝘪𝘰.
𝘖𝘴 𝘥𝘦𝘻 𝘢𝘯𝘰𝘴 𝘴𝘦𝘨𝘶𝘪𝘯𝘵𝘦𝘴 𝘧𝘰𝘳𝘢𝘮 𝘢𝘯𝘰𝘴 𝘥𝘦 𝘳𝘦𝘤𝘦𝘱𝘤̧𝘢̃𝘰, 𝘢𝘧𝘪𝘳𝘮𝘢𝘤̧𝘢̃𝘰 𝘦 𝘴𝘶𝘤𝘦𝘴𝘴𝘰 𝘥𝘢 𝘵𝘦𝘰𝘳𝘪𝘢. 𝘌𝘮 𝟣𝟫𝟣𝟪 𝘴𝘶𝘳𝘨𝘪𝘳𝘢𝘮 𝘰𝘴 𝘱𝘳𝘪𝘮𝘦𝘪𝘳𝘰𝘴 𝘥𝘰𝘪𝘴 𝘭𝘪𝘷𝘳𝘰𝘴 𝘥𝘦𝘥𝘪𝘤𝘢𝘥𝘰𝘴 𝘢̀ 𝘛𝘙𝘎, 𝘶𝘮 𝘦𝘮 𝘓𝘰𝘯𝘥𝘳𝘦𝘴, 𝘱𝘰𝘳 𝘈𝘳𝘵𝘩𝘶𝘳 𝘚. 𝘌𝘥𝘥𝘪𝘯𝘨𝘵𝘰𝘯 (𝟣𝟪𝟪𝟤-𝟣𝟫𝟦𝟦), 𝘦 𝘰𝘶𝘵𝘳𝘰 𝘦𝘮 𝘉𝘦𝘳𝘭𝘪𝘮, 𝘱𝘰𝘳 𝘏𝘦𝘳𝘮𝘢𝘯 𝘞𝘦𝘺𝘭 (𝟣𝟪𝟧𝟧-𝟣𝟫𝟧𝟧). 𝘈 𝟤𝟫 𝘥𝘦 𝘔𝘢𝘪𝘰 𝘥𝘦 𝟣𝟫𝟣𝟫, 𝘰 𝘦𝘯𝘤𝘶𝘳𝘷𝘢𝘮𝘦𝘯𝘵𝘰 𝘥𝘰𝘴 𝘳𝘢𝘪𝘰𝘴 𝘭𝘶𝘮𝘪𝘯𝘰𝘴𝘰𝘴 𝘳𝘢𝘴𝘢𝘯𝘥𝘰 𝘰 𝘚𝘰𝘭 𝘧𝘰𝘪 𝘮𝘦𝘥𝘪𝘥𝘰 𝘯𝘢 𝘪𝘭𝘩𝘢 𝘥𝘰 𝘗𝘳𝘪́𝘯𝘤𝘪𝘱𝘦 𝘦 𝘯𝘰 𝘚𝘰𝘣𝘳𝘢𝘭 (𝘉𝘳𝘢𝘴𝘪𝘭) 𝘥𝘶𝘳𝘢𝘯𝘵𝘦 𝘶𝘮 𝘦𝘤𝘭𝘪𝘱𝘴𝘦 𝘴𝘰𝘭𝘢𝘳, 𝘨𝘳𝘢𝘤̧𝘢𝘴 𝘢𝘰 𝘻𝘦𝘭𝘰 𝘥𝘦 𝘌𝘥𝘥𝘪𝘯𝘨𝘵𝘰𝘯 𝘦 𝘥𝘰 𝘈𝘴𝘵𝘳𝘰́𝘯𝘰𝘮𝘰 𝘙𝘦𝘢𝘭 𝘣𝘳𝘪𝘵𝘢̂𝘯𝘪𝘤𝘰 𝘚𝘪𝘳 𝘍𝘳𝘢𝘯𝘬 𝘞𝘢𝘵𝘴𝘰𝘯 𝘋𝘺𝘴𝘰𝘯 (𝟣𝟪𝟨𝟪-𝟣𝟫𝟥𝟫).
𝘈𝘴 𝘱𝘳𝘦𝘷𝘪𝘴𝘰̃𝘦𝘴 𝘥𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘥𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘧𝘰𝘳𝘢𝘮 𝘱𝘶𝘣𝘭𝘪𝘤𝘢𝘮𝘦𝘯𝘵𝘦 𝘤𝘰𝘯𝘧𝘪𝘳𝘮𝘢𝘥𝘢𝘴 𝘯𝘰 𝘧𝘢𝘮𝘰𝘴𝘰 𝘦𝘯𝘤𝘰𝘯𝘵𝘳𝘰 𝘥𝘢 𝘙𝘰𝘺𝘢𝘭 𝘚𝘰𝘤𝘪𝘦𝘵𝘺 𝘦𝘮 𝘓𝘰𝘯𝘥𝘳𝘦𝘴 𝘢 𝟨 𝘥𝘦 𝘕𝘰𝘷𝘦𝘮𝘣𝘳𝘰 𝘥𝘦 𝟣𝟫𝟣𝟫, 𝘦𝘮 𝘳𝘦𝘶𝘯𝘪𝘢̃𝘰 𝘤𝘰𝘯𝘫𝘶𝘯𝘵𝘢 𝘤𝘰𝘮 𝘢 𝘙𝘰𝘺𝘢𝘭 𝘈𝘴𝘵𝘳𝘰𝘯𝘰𝘮𝘪𝘤𝘢𝘭 𝘚𝘰𝘤𝘪𝘦𝘵𝘺, 𝘴𝘰𝘣 𝘢 𝘱𝘳𝘦𝘴𝘪𝘥𝘦̂𝘯𝘤𝘪𝘢 𝘥𝘰 𝘱𝘢𝘵𝘳𝘪𝘢𝘳𝘤𝘢 𝘥𝘢 𝘧𝘪́𝘴𝘪𝘤𝘢 𝘑.𝘑. 𝘛𝘩𝘰𝘮𝘴𝘰𝘯. 𝘕𝘰 𝘥𝘪𝘢 𝘴𝘦𝘨𝘶𝘪𝘯𝘵𝘦, 𝘯𝘰 𝘤𝘢𝘣𝘦𝘤̧𝘢𝘭𝘩𝘰 𝘥𝘰 𝘫𝘰𝘳𝘯𝘢𝘭 𝘭𝘰𝘯𝘥𝘳𝘪𝘯𝘰 “𝘛𝘩𝘦 𝘛𝘪𝘮𝘦𝘴” 𝘭𝘪𝘢-𝘴𝘦: “𝘙𝘦𝘷𝘰𝘭𝘶𝘤̧𝘢̃𝘰 𝘯𝘢 𝘊𝘪𝘦̂𝘯𝘤𝘪𝘢/ 𝘕𝘰𝘷𝘢 𝘛𝘦𝘰𝘳𝘪𝘢 𝘥𝘰 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘰/𝘐𝘥𝘦𝘪𝘢𝘴 𝘕𝘦𝘸𝘵𝘰𝘯𝘪𝘢𝘯𝘢𝘴 𝘈𝘣𝘢𝘯𝘥𝘰𝘯𝘢𝘥𝘢𝘴.” 𝘈 𝘗𝘳𝘪𝘮𝘦𝘪𝘳𝘢 𝘎𝘶𝘦𝘳𝘳𝘢 𝘔𝘶𝘯𝘥𝘪𝘢𝘭 𝘵𝘪𝘯𝘩𝘢 𝘵𝘦𝘳𝘮𝘪𝘯𝘢𝘥𝘰. 𝘖 𝘮𝘶𝘯𝘥𝘰 𝘦𝘴𝘵𝘢𝘷𝘢 𝘤𝘢𝘯𝘴𝘢𝘥𝘰 𝘦 𝘥𝘦𝘴𝘪𝘭𝘶𝘥𝘪𝘥𝘰 𝘦 𝘢̀ 𝘱𝘳𝘰𝘤𝘶𝘳𝘢 𝘥𝘦 𝘯𝘰𝘷𝘰𝘴 𝘪𝘥𝘦𝘢𝘪𝘴. 𝘈 𝘵𝘦𝘰𝘳𝘪𝘢 𝘥𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯, 𝘤𝘰𝘮 𝘢𝘴 𝘴𝘶𝘢𝘴 𝘪𝘥𝘦𝘪𝘢𝘴 𝘣𝘪𝘻𝘢𝘳𝘳𝘢𝘴 𝘴𝘰𝘣𝘳𝘦 𝘢 𝘤𝘶𝘳𝘷𝘢𝘵𝘶𝘳𝘢 𝘥𝘰 𝘦𝘴𝘱𝘢𝘤̧𝘰(-𝘵𝘦𝘮𝘱𝘰), 𝘤𝘢𝘱𝘵𝘰𝘶 𝘢 𝘪𝘮𝘢𝘨𝘪𝘯𝘢𝘤̧𝘢̃𝘰 𝘥𝘢 𝘰𝘱𝘪𝘯𝘪𝘢̃𝘰 𝘱𝘶́𝘣𝘭𝘪𝘤𝘢, 𝘦𝘮𝘣𝘰𝘳𝘢 𝘮𝘶𝘪𝘵𝘰 𝘱𝘰𝘶𝘤𝘢𝘴 𝘱𝘦𝘴𝘴𝘰𝘢𝘴 𝘢 𝘤𝘰𝘮𝘱𝘳𝘦𝘦𝘯𝘥𝘦𝘴𝘴𝘦𝘮.
𝘈𝘱𝘢𝘳𝘦𝘤𝘦𝘳𝘢𝘮 𝘦𝘯𝘵𝘢̃𝘰 𝘪𝘯𝘶́𝘮𝘦𝘳𝘰𝘴 𝘢𝘳𝘵𝘪𝘨𝘰𝘴 𝘥𝘦 𝘥𝘪𝘷𝘶𝘭𝘨𝘢𝘤̧𝘢̃𝘰 𝘦𝘮 𝘫𝘰𝘳𝘯𝘢𝘪𝘴 𝘦 𝘦𝘮 𝘳𝘦𝘷𝘪𝘴𝘵𝘢𝘴 𝘧𝘪𝘭𝘰𝘴𝘰́𝘧𝘪𝘤𝘢𝘴 𝘲𝘶𝘦 𝘦𝘯𝘵𝘶𝘴𝘪𝘢𝘴𝘮𝘢𝘳𝘢𝘮 𝘰 𝘱𝘶́𝘣𝘭𝘪𝘤𝘰 𝘤𝘶𝘭𝘵𝘰 𝘦 𝘵𝘰𝘳𝘯𝘢𝘳𝘢𝘮 𝘢 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘥𝘢𝘥𝘦 𝘶𝘮 𝘵𝘦𝘮𝘢 𝘥𝘦 𝘤𝘰𝘯𝘷𝘦𝘳𝘴𝘢𝘤̧𝘢̃𝘰 𝘰𝘣𝘳𝘪𝘨𝘢𝘵𝘰́𝘳𝘪𝘰. 𝘖 𝘱𝘳𝘰́𝘱𝘳𝘪𝘰 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘦𝘴𝘤𝘳𝘦𝘷𝘦𝘶 𝘶𝘮 𝘭𝘰𝘯𝘨𝘰 𝘢𝘳𝘵𝘪𝘨𝘰 𝘯𝘰 “𝘛𝘩𝘦 𝘛𝘪𝘮𝘦𝘴” 𝘦𝘮 𝘧𝘪𝘯𝘢𝘪𝘴 𝘥𝘦 𝟣𝟫𝟣𝟫, 𝘱𝘳𝘰𝘤𝘶𝘳𝘢𝘯𝘥𝘰 𝘦𝘹𝘱𝘭𝘪𝘤𝘢́-𝘭𝘢 𝘢𝘰𝘴 𝘭𝘦𝘪𝘨𝘰𝘴. 𝘕𝘢 𝘤𝘢𝘱𝘢 𝘥𝘢 𝘳𝘦𝘷𝘪𝘴𝘵𝘢 𝘯𝘰𝘵𝘪𝘤𝘪𝘰𝘴𝘢 “𝘉𝘦𝘳𝘭𝘪𝘯𝘦𝘳 𝘐𝘭𝘭𝘶𝘴𝘵𝘳𝘪𝘳𝘵𝘦 𝘡𝘦𝘪𝘵𝘶𝘯𝘨” 𝘥𝘦 𝟣𝟦 𝘥𝘦 𝘋𝘦𝘻𝘦𝘮𝘣𝘳𝘰 𝘥𝘦 𝟣𝟫𝟣𝟫 𝘢 𝘴𝘶𝘢 𝘧𝘰𝘵𝘰𝘨𝘳𝘢𝘧𝘪𝘢 𝘦́ 𝘱𝘶𝘣𝘭𝘪𝘤𝘢𝘥𝘢 𝘤𝘰𝘮 𝘢 𝘭𝘦𝘨𝘦𝘯𝘥𝘢: “𝘜𝘮𝘢 𝘯𝘰𝘷𝘢 𝘨𝘳𝘢𝘯𝘥𝘦 𝘧𝘪𝘨𝘶𝘳𝘢 𝘥𝘢 𝘩𝘪𝘴𝘵𝘰́𝘳𝘪𝘢 𝘮𝘶𝘯𝘥𝘪𝘢𝘭.”
𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘵𝘰𝘳𝘯𝘢-𝘴𝘦 𝘦𝘯𝘵𝘢̃𝘰 𝘶𝘮 𝘱𝘦𝘯𝘴𝘢𝘥𝘰𝘳 𝘤𝘦́𝘭𝘦𝘣𝘳𝘦 𝘦𝘮 𝘵𝘰𝘥𝘰 𝘰 𝘮𝘶𝘯𝘥𝘰 𝘦 𝘢 𝘴𝘶𝘢 𝘰𝘱𝘪𝘯𝘪𝘢̃𝘰 𝘦́ 𝘴𝘰𝘭𝘪𝘤𝘪𝘵𝘢𝘥𝘢 𝘱𝘢𝘳𝘢 𝘰𝘴 𝘮𝘢𝘪𝘴 𝘥𝘪𝘷𝘦𝘳𝘴𝘰𝘴 𝘢𝘴𝘴𝘶𝘯𝘵𝘰𝘴. 𝘖𝘴 𝘌𝘴𝘵𝘢𝘥𝘰𝘴 𝘜𝘯𝘪𝘥𝘰𝘴 𝘳𝘦𝘤𝘦𝘣𝘦𝘮-𝘯𝘰 𝘤𝘰𝘮 𝘱𝘰𝘮𝘱𝘢 𝘦 𝘤𝘪𝘳𝘤𝘶𝘯𝘴𝘵𝘢̂𝘯𝘤𝘪𝘢 𝘦𝘮 𝟣𝟫𝟤𝟣, 𝘦 𝘰 𝘴𝘦𝘶 𝘯𝘰𝘮𝘦 𝘱𝘢𝘴𝘴𝘢 𝘢 𝘴𝘦𝘳 𝘱𝘳𝘰𝘯𝘶𝘯𝘤𝘪𝘢𝘥𝘰 𝘤𝘰𝘮 𝘳𝘦𝘷𝘦𝘳𝘦̂𝘯𝘤𝘪𝘢, 𝘢𝘤𝘢𝘣𝘢𝘯𝘥𝘰 𝘱𝘰𝘳 𝘴𝘦 𝘵𝘰𝘳𝘯𝘢𝘳 𝘴𝘪𝘯𝘰́𝘯𝘪𝘮𝘰 𝘥𝘦 𝘨𝘦́𝘯𝘪𝘰. 𝘕𝘦𝘮 𝘵𝘰𝘥𝘰𝘴, 𝘱𝘰𝘳𝘦́𝘮, 𝘢𝘱𝘭𝘢𝘶𝘥𝘪𝘳𝘢𝘮 𝘰 𝘵𝘳𝘪𝘶𝘯𝘧𝘰 𝘥𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯. 𝘈𝘭𝘨𝘶𝘯𝘴 𝘮𝘦𝘮𝘣𝘳𝘰𝘴 𝘥𝘢 𝘤𝘰𝘮𝘶𝘯𝘪𝘥𝘢𝘥𝘦 𝘤𝘪𝘦𝘯𝘵𝘪́𝘧𝘪𝘤𝘢, 𝘦 𝘰𝘶𝘵𝘳𝘢𝘴 𝘱𝘦𝘴𝘴𝘰𝘢𝘴 𝘪𝘮𝘱𝘦𝘭𝘪𝘥𝘢𝘴 𝘱𝘰𝘳 𝘳𝘢𝘻𝘰̃𝘦𝘴 𝘱𝘰𝘭𝘪́𝘵𝘪𝘤𝘢𝘴, 𝘮𝘰𝘷𝘦𝘮-𝘭𝘩𝘦 𝘶𝘮𝘢 𝘨𝘶𝘦𝘳𝘳𝘢 𝘴𝘦𝘮 𝘲𝘶𝘢𝘳𝘵𝘦𝘭, 𝘤𝘰𝘯𝘴𝘪𝘥𝘦𝘳𝘢𝘯𝘥𝘰 𝘢 𝘴𝘶𝘢 𝘵𝘦𝘰𝘳𝘪𝘢 𝘵𝘰𝘵𝘢𝘭𝘮𝘦𝘯𝘵𝘦 𝘪𝘯𝘤𝘰𝘮𝘱𝘳𝘦𝘦𝘯𝘴𝘪́𝘷𝘦𝘭 𝘦 𝘪𝘯𝘶́𝘵𝘪𝘭.
𝘖 𝘲𝘶𝘦 𝘦́ 𝘦𝘴𝘱𝘢𝘯𝘵𝘰𝘴𝘰 𝘦́ 𝘲𝘶𝘦 𝘢𝘴 𝘪𝘥𝘦𝘪𝘢𝘴 𝘥𝘦 𝘌𝘪𝘯𝘴𝘵𝘦𝘪𝘯 𝘰𝘧𝘦𝘳𝘦𝘤𝘦𝘳𝘢𝘮 𝘰 𝘦𝘯𝘲𝘶𝘢𝘥𝘳𝘢𝘮𝘦𝘯𝘵𝘰 𝘵𝘦𝘰́𝘳𝘪𝘤𝘰 𝘢̀𝘴 𝘥𝘦𝘴𝘤𝘰𝘣𝘦𝘳𝘵𝘢𝘴 𝘲𝘶𝘦 𝘢𝘴𝘵𝘳𝘰́𝘯𝘰𝘮𝘰𝘴 𝘦 𝘢𝘴𝘵𝘳𝘰𝘧𝘪́𝘴𝘪𝘤𝘰𝘴 𝘧𝘪𝘻𝘦𝘳𝘢𝘮 𝘴𝘰𝘣𝘳𝘦 𝘢 𝘦𝘴𝘵𝘳𝘶𝘵𝘶𝘳𝘢 𝘦 𝘤𝘰𝘯𝘴𝘵𝘪𝘵𝘶𝘪𝘤̧𝘢̃𝘰 𝘥𝘰 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘰 𝘢𝘰 𝘭𝘰𝘯𝘨𝘰 𝘥𝘰 𝘴𝘦́𝘤𝘶𝘭𝘰 𝘟𝘟, 𝘪𝘭𝘶𝘴𝘵𝘳𝘢𝘯𝘥𝘰 𝘰𝘴 𝘤𝘢𝘮𝘪𝘯𝘩𝘰𝘴 𝘤𝘰𝘮𝘱𝘭𝘦𝘹𝘰𝘴 𝘥𝘢 𝘤𝘪𝘦̂𝘯𝘤𝘪𝘢 𝘦 𝘢𝘴 𝘴𝘶𝘢𝘴 𝘪𝘯𝘤𝘳𝘪́𝘷𝘦𝘪𝘴 𝘳𝘦𝘷𝘦𝘭𝘢𝘤̧𝘰̃𝘦𝘴. 𝘚𝘢̃𝘰 𝘦𝘴𝘵𝘦𝘴 𝘤𝘢𝘮𝘪𝘯𝘩𝘰𝘴 𝘲𝘶𝘦 𝘰 𝘭𝘦𝘪𝘵𝘰𝘳 𝘥𝘦𝘴𝘵𝘢𝘴 𝘱𝘢𝘭𝘢𝘷𝘳𝘢𝘴 𝘱𝘰𝘥𝘦𝘳𝘢́ 𝘱𝘦𝘳𝘤𝘰𝘳𝘳𝘦𝘳 𝘢𝘰 𝘭𝘦𝘳 𝘰 𝘭𝘪𝘷𝘳𝘰 “𝘖 𝘜𝘯𝘪𝘷𝘦𝘳𝘴𝘰, 𝘥𝘰 𝘉𝘪𝘨 𝘉𝘢𝘯𝘨 𝘢𝘰𝘴 𝘉𝘶𝘳𝘢𝘤𝘰𝘴 𝘕𝘦𝘨𝘳𝘰𝘴”.
* Investigador do Centro de Astronomia & Astrofísica Universidade de Lisboa
IN "O JORNAL ECONÓMICO" - 18/08/22 .
Sem comentários:
Enviar um comentário